667 research outputs found

    On the Equivalence Between Deep NADE and Generative Stochastic Networks

    Full text link
    Neural Autoregressive Distribution Estimators (NADEs) have recently been shown as successful alternatives for modeling high dimensional multimodal distributions. One issue associated with NADEs is that they rely on a particular order of factorization for P(x)P(\mathbf{x}). This issue has been recently addressed by a variant of NADE called Orderless NADEs and its deeper version, Deep Orderless NADE. Orderless NADEs are trained based on a criterion that stochastically maximizes P(x)P(\mathbf{x}) with all possible orders of factorizations. Unfortunately, ancestral sampling from deep NADE is very expensive, corresponding to running through a neural net separately predicting each of the visible variables given some others. This work makes a connection between this criterion and the training criterion for Generative Stochastic Networks (GSNs). It shows that training NADEs in this way also trains a GSN, which defines a Markov chain associated with the NADE model. Based on this connection, we show an alternative way to sample from a trained Orderless NADE that allows to trade-off computing time and quality of the samples: a 3 to 10-fold speedup (taking into account the waste due to correlations between consecutive samples of the chain) can be obtained without noticeably reducing the quality of the samples. This is achieved using a novel sampling procedure for GSNs called annealed GSN sampling, similar to tempering methods that combines fast mixing (obtained thanks to steps at high noise levels) with accurate samples (obtained thanks to steps at low noise levels).Comment: ECML/PKDD 201

    Bayesian Nonparametric Inverse Reinforcement Learning

    Get PDF
    Inverse reinforcement learning (IRL) is the task of learning the reward function of a Markov Decision Process (MDP) given the transition function and a set of observed demonstrations in the form of state-action pairs. Current IRL algorithms attempt to find a single reward function which explains the entire observation set. In practice, this leads to a computationally-costly search over a large (typically infinite) space of complex reward functions. This paper proposes the notion that if the observations can be partitioned into smaller groups, a class of much simpler reward functions can be used to explain each group. The proposed method uses a Bayesian nonparametric mixture model to automatically partition the data and find a set of simple reward functions corresponding to each partition. The simple rewards are interpreted intuitively as subgoals, which can be used to predict actions or analyze which states are important to the demonstrator. Experimental results are given for simple examples showing comparable performance to other IRL algorithms in nominal situations. Moreover, the proposed method handles cyclic tasks (where the agent begins and ends in the same state) that would break existing algorithms without modification. Finally, the new algorithm has a fundamentally different structure than previous methods, making it more computationally efficient in a real-world learning scenario where the state space is large but the demonstration set is small

    Nonparametric Hierarchical Clustering of Functional Data

    Full text link
    In this paper, we deal with the problem of curves clustering. We propose a nonparametric method which partitions the curves into clusters and discretizes the dimensions of the curve points into intervals. The cross-product of these partitions forms a data-grid which is obtained using a Bayesian model selection approach while making no assumptions regarding the curves. Finally, a post-processing technique, aiming at reducing the number of clusters in order to improve the interpretability of the clustering, is proposed. It consists in optimally merging the clusters step by step, which corresponds to an agglomerative hierarchical classification whose dissimilarity measure is the variation of the criterion. Interestingly this measure is none other than the sum of the Kullback-Leibler divergences between clusters distributions before and after the merges. The practical interest of the approach for functional data exploratory analysis is presented and compared with an alternative approach on an artificial and a real world data set

    Structurama: Bayesian Inference of Population Structure

    Get PDF
    Structurama is a program for inferring population structure. Specifically, the program calculates the posterior probability of assigning individuals to different populations. The program takes as input a file containing the allelic information at some number of loci sampled from a collection of individuals. After reading a data file into computer memory, Structurama uses a Gibbs algorithm to sample assignments of individuals to populations. The program implements four different models: The number of populations can be considered fixed or a random variable with a Dirichlet process prior; moreover, the genotypes of the individuals in the analysis can be considered to come from a single population (no admixture) or as coming from several different populations (admixture). The output is a file of partitions of individuals to populations that were sampled by the Markov chain Monte Carlo algorithm. The partitions are sampled in proportion to their posterior probabilities. The program implements a number of ways to summarize the sampled partitions, including calculation of the ‘mean’ partition—a partition of the individuals to populations that minimizes the squared distance to the sampled partitions

    Gaussian Processes in Machine Learning

    Full text link
    We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work

    Bayesian nonparametric models for name disambiguation and supervised learning

    Get PDF
    This thesis presents new Bayesian nonparametric models and approaches for their development, for the problems of name disambiguation and supervised learning. Bayesian nonparametric methods form an increasingly popular approach for solving problems that demand a high amount of model flexibility. However, this field is relatively new, and there are many areas that need further investigation. Previous work on Bayesian nonparametrics has neither fully explored the problems of entity disambiguation and supervised learning nor the advantages of nested hierarchical models. Entity disambiguation is a widely encountered problem where different references need to be linked to a real underlying entity. This problem is often unsupervised as there is no previously known information about the entities. Further to this, effective use of Bayesian nonparametrics offer a new approach to tackling supervised problems, which are frequently encountered. The main original contribution of this thesis is a set of new structured Dirichlet process mixture models for name disambiguation and supervised learning that can also have a wide range of applications. These models use techniques from Bayesian statistics, including hierarchical and nested Dirichlet processes, generalised linear models, Markov chain Monte Carlo methods and optimisation techniques such as BFGS. The new models have tangible advantages over existing methods in the field as shown with experiments on real-world datasets including citation databases and classification and regression datasets. I develop the unsupervised author-topic space model for author disambiguation that uses free-text to perform disambiguation unlike traditional author disambiguation approaches. The model incorporates a name variant model that is based on a nonparametric Dirichlet language model. The model handles both novel unseen name variants and can model the unknown authors of the text of the documents. Through this, the model can disambiguate authors with no prior knowledge of the number of true authors in the dataset. In addition, it can do this when the authors have identical names. I use a model for nesting Dirichlet processes named the hybrid NDP-HDP. This model allows Dirichlet processes to be clustered together and adds an additional level of structure to the hierarchical Dirichlet process. I also develop a new hierarchical extension to the hybrid NDP-HDP. I develop this model into the grouped author-topic model for the entity disambiguation task. The grouped author-topic model uses clusters to model the co-occurrence of entities in documents, which can be interpreted as research groups. Since this model does not require entities to be linked to specific words in a document, it overcomes the problems of some existing author-topic models. The model incorporates a new method for modelling name variants, so that domain-specific name variant models can be used. Lastly, I develop extensions to supervised latent Dirichlet allocation, a type of supervised topic model. The keyword-supervised LDA model predicts document responses more accurately by modelling the effect of individual words and their contexts directly. The supervised HDP model has more model flexibility by using Bayesian nonparametrics for supervised learning. These models are evaluated on a number of classification and regression problems, and the results show that they outperform existing supervised topic modelling approaches. The models can also be extended to use similar information to the previous models, incorporating additional information such as entities and document titles to improve prediction

    Bayesian solutions to the label switching problem

    Get PDF
    The label switching problem, the unidentifiability of the permutation of clusters or more generally latent variables, makes interpretation of results computed with MCMC sampling difficult. We introduce a fully Bayesian treatment of the permutations which performs better than alternatives. The method can be used to compute summaries of the posterior samples even for nonparametric Bayesian methods, for which no good solutions exist so far. Although being approximative in this case, the results are very promising. The summaries are intuitively appealing: A summarized cluster is defined as a set of points for which the likelihood of being in the same cluster is maximized

    Applying Bayesian Neural Networks to Separate Neutrino Events from Backgrounds in Reactor Neutrino Experiments

    Full text link
    A toy detector has been designed to simulate central detectors in reactor neutrino experiments in the paper. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of the toy detector are generated in the signal region. The Bayesian Neural Networks(BNN) are applied to separate neutrino events from backgrounds in reactor neutrino experiments. As a result, the most neutrino events and uncorrelated background events in the signal region can be identified with BNN, and the part events each of the fast neutron and 8^{8}He/9^{9}Li backgrounds in the signal region can be identified with BNN. Then, the signal to noise ratio in the signal region is enhanced with BNN. The neutrino discrimination increases with the increase of the neutrino rate in the training sample. However, the background discriminations decrease with the decrease of the background rate in the training sample.Comment: 9 pages, 1 figures, 1 tabl

    Improving Application of Bayesian Neural Networks to Discriminate Neutrino Events from Backgrounds in Reactor Neutrino Experiments

    Full text link
    The application of Bayesian Neural Networks(BNN) to discriminate neutrino events from backgrounds in reactor neutrino experiments has been described in Ref.\cite{key-1}. In the paper, BNN are also used to identify neutrino events in reactor neutrino experiments, but the numbers of photoelectrons received by PMTs are used as inputs to BNN in the paper, not the reconstructed energy and position of events. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of a toy detector are generated in the signal region. Compared to the BNN method in Ref.\cite{key-1}, more 8^{8}He/9^{9}Li background and uncorrelated background in the signal region can be rejected by the BNN method in the paper, but more fast neutron background events in the signal region are unidentified using the BNN method in the paper. The uncorrelated background to signal ratio and the 8^{8}He/9^{9}Li background to signal ratio are significantly improved using the BNN method in the paper in comparison with the BNN method in Ref.\cite{key-1}. But the fast neutron background to signal ratio in the signal region is a bit larger than the one in Ref.\cite{key-1}.Comment: 9 pages, 1 figure and 1 table, accepted by Journal of Instrumentatio
    • …
    corecore